
Evidence Management in
Programatica

 (Presentation for SoftCeMent '05)

Mark P Jones
Portland State University

November 2005

(joint work with the Programatica Project at PSU and OGI/OHSU)

! “Programming as if Properties Matter” to support
the construction and certification of high-assurance
systems

! There is a Broad Spectrum of (Useful) Assurance
Techniques: code review, testing, formal methods, …

! Everything Changes: flexible and efficient tools are
needed to deal with constantly evolving requirements,
code, evidence, and assurance goals

! Make it Real: assuring security properties of a real-
world microkernel implementation

Programatica Positions:

Programming as if Properties Matter:

Source Code

Properties

Building High-assurance Software:

There are many ways to increase assurance:
! Test programs on specific cases

! Test programs on randomly generated test cases
derived from expected properties

! Peer review

! Use algorithms from published papers

! Reason about meta-properties (e.g., using types)

! Use theorem provers to validate (translated) code

! …

Each can contribute significantly to increased
reliability, security, and trustworthiness

Evidence:

! Diverse techniques, varying in:
! Applicability

! Assurance

! Technical details

! But there is a common feature:
! Each one results in some tangible form of

evidence that provides a basis for trust

Examples of Evidence:

There are many kinds of evidence:
! An (input, expected output) pair for a test case
! A property statement, and heuristics for guiding the

selection of “interesting” random test cases

! A record of a code review meeting
! A citation/URL for a published paper or result
! A type and the associated derived property
! A translation of the source program into a suitable

theory and a user-specified proof tactic

! …

Each different kind of evidence is stored with the
program as a certificate

Extreme Programming:

Tests

Implementation

! Testing and Programming, hand in hand

! Testing reveals errors in the program

! Programming reveals errors in the test cases

"Extreme Formal Methods":

Specification

Implementation

! Programming and Validation, hand in hand

! Validation reveals errors in the program

! Programming reveals errors in the specification

The Programatica Vision:

Instrumenting
compiler

Random
test generator

Automatic Decision
Procedures

Interactive Proof
Editor

Model
Checking

User supplied,
domain-specific
toolsets...

Type
checking

Execute
& test

Code review

Theorem
Proving

lo hi

assure-o-meter

Reporting,

Analysis,

Management

Program Development

Environment

& Property Certification

!"Isabelle
!" Logical framework, tactic-based theorem prover

!"Testcases
!" Individual test cases / regression testing

!"QuickCheck
!" Random testing

!"Alfa
!" Interactive proof editor based on type theory

!"Plover
!" The P-logic verifier

!"“I say so”
!" A person signs their name by an assertion

implemented,
automated,
maturing

hand / auto
translation

Programatica Servers:

Evidence and Certificates:

The certificate abstraction is designed to
support:

! Capturing evidence (in many different forms) and
Collating it with source materials

! Combining evidence from different sources

! Tracking dependencies and detecting when
evidence must be revalidated as a result of changes

! Managing evidence by analyzing and reporting on
what has been established, identifying weaknesses,
guiding further effort, etc…

Capture and Collate:

Compound documents allow source materials
to be packaged with related evidence and
dependency information.

/

cert2 certn…source
dependency

info
cert1

descriptor Other files or folders
that are needed by

this certificate.

Combining Evidence:

Programatica allows us to combine evidence from
different sources:

Goals:
! Evidence Integration

! Modular Certification

Mechanism:
! Each certificate carries a sequent:

 Hypotheses ! Conclusions

! Servers for external tools are responsible for testing
validity (i.e., checking that a certificate’s sequent is
consistent with its evidence)

A ! B

N.B. Different kinds of

certificate

A, B ! C

Certificate Interactions:

A, B ! C A ! B

A ! C

Programatica-level

inference

Programatica-level

certificate

A measure of

assurance …

Certificate Interactions:

A, B ! C A ! B

A ! C! A

! C

Certificate Interactions:

A, B ! C A ! B

A ! C! A

Untrustworthy source?

! C

Certificate Interactions:

A, B ! C A ! B

A ! C! A

! B
“what if?”

! C
“then …”

! C

Explore Alternatives!

Certificate Interactions:

Dealing with Change:

! Changes happen all the time in software development!
! functionality, requirements, bug fixes, assurance

! We must handle change as efficiently as possible

! Changes to source code require recompilation
! A fully automated process using “make” tools

! Changes to source code require recertification
! Some evidence cannot be reconstructed automatically

Recertification after Change:

! “make”-like functionality for certification
! Track dependencies to determine when evidence is

invalidated by changes to source code

! Minimize the need for recertification:
! Fine-grained dependency tracking

! Robust dependency tracking

! Ignore insignificant changes: reformatting; reordering;
changes to comments; changes to local variable names;
changes in unrelated sections of code; …

! Lazy recertification
! Track validity but do not require immediate recertification

Using a Dependency Graph:

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

New Definition!

Using a Dependency Graph:

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

Potential change

Using a Dependency Graph:

Hashing to Detect Change:

! When we parse a source file, we calculate a
cryptographically robust hash (e.g., MD5) over the
abstract syntax of each definition

! These hashes are cached as hidden information:
0cc175b9c0f1b6a831c399e269772661

92eb5ffee6ae2fec3ad71c777531578f

81a5fe3d544359af13848e6192ece475

445a4ca24e10824e03ef42e2e1d755d9

987dd8f5f1293857dc7932c14c7f3d80

bb53046df3ef7793ee7c37aec0d090d0

ad797e6f29cf558f7aeb8200563ecd3a

! If we find a definition whose hash is not listed, then it
must be new/modified.

! By hashing over abstract syntax, we do not flag any
changes if the source text is reformatted, if comments
are changed, etc…

Management Tools:

Scoring & prioritization

mechanisms required

Certificate management tools let
users ask (and answer) questions
like the following:

!"What properties have I verified

(or not)?

!"What tools did I use?

!"Is the evidence up to date &

consistent with the code?

!"What conclusions can we draw

from the evidence in hand?

!"What other verification

strategies should I pursue?

!"Where am I most vulnerable?

!"What should I do next?

Future Challenges:

! Making the assure-o-meter real

! Dealing with non-functional properties

! Encoding certification policy

! Certifying the certification tools …

! Developer Carrot and Stick

